coding unit, and thus coding units having a recursive tree structure may be obtained. Encoding information may include split information about a coding unit, information about a partition type, information about a prediction mode, and information about a size of a transformation unit. Table 1 shows the encoding information that may be set by the video encoding and decoding apparatuses 100 and 200. In other words, if split information of the transformation unit is 0, the size of the transformation unit may be $2N\times 2N$, which is the size of the current coding unit. If split information of the transformation unit is 1, the transformation units may be obtained by splitting the current coding unit. Also, if a partition type of the current coding unit having the size of $2N\times 2N$ is a symmetrical partition type, a size of a TABLE 1 | Split Information 0 (Encoding on Coding Unit having Size of $2N \times 2N$ and Current Depth of d) | | | | | Split
Information
1 | |--|----------------|----------------|-----------------------------|------------------|---------------------------| | Prediction
Mode | Partition Type | | Size of Transformation Unit | | Repeatedly
Encode | | Intra | Symmetrical | Asymmetrical | Split | Split | Coding Units | | Inter | Partition | Partition | Information 0 | Information 1 | having | | Skip | Type | Type | of | of | Lower Depth | | (Only | | | Transformation | Transformation | of $d + 1$ | | $2N \times 2N$ | | | Unit | Unit | | | | $2N \times 2N$ | $2N \times nU$ | $2N \times 2N$ | $N \times N$ | | | | $2N \times N$ | $2N \times nD$ | | (Symmetrical | | | | $N \times 2N$ | $nL \times 2N$ | | Partition Type) | | | | $N \times N$ | $nR \times 2N$ | | $N/2 \times N/2$ | | | | | | | (Asymmetrical | | | | | | | Partition Type) | | [0164] The output unit 130 of the video encoding apparatus 100 may output the encoding information about the coding units having a tree structure, and the image data and encoding information extractor 220 of the video decoding apparatus 200 may extract the encoding information about the coding units having a tree structure from a received bitstream. [0165] Split information indicates whether a current coding unit is split into coding units of a lower depth. If split information of a current depth d is 0, a depth, in which a current coding unit is no longer split into a lower depth, is a coded depth, and thus information about a partition type, prediction mode, and a size of a transformation unit may be defined for the coded depth. If the current coding unit is further split according to the split information, encoding is independently performed on four split coding units of a lower depth. [0166] A prediction mode may be one of an intra mode, an inter mode, and a skip mode. The intra mode and the inter mode may be defined in all partition types, and the skip mode is defined only in a partition type having a size of 2N×2N. [0167] The information about the partition type may indicate symmetrical partition types having sizes of 2N×2N, 2N×N, N×2N, and N×N, which are obtained by symmetrically splitting a height or a width of a prediction unit, and asymmetrical partition types having sizes of 2N×nU, 2N×nD, nL×2N, and nR×2N, which are obtained by asymmetrically splitting the height or width of the prediction unit. The asymmetrical partition types having the sizes of 2N×nU and 2N×nD may be respectively obtained by splitting the height of the prediction unit in 1:3 and 3:1, and the asymmetrical partition types having the sizes of nL×2N and nR×2N may be respectively obtained by splitting the width of the prediction unit in 1:3 and 3:1. The symmetrical partition type of N×N may be set only when a current coding unit of 2N×2N is a minimum coding unit. [0168] The size of the transformation unit may be set to be two types in the intra mode and two types in the inter mode. transformation unit may be N×N, and if the partition type of the current coding unit is an asymmetrical partition type, the size of the transformation unit may be $N/2 \times N/2$. [0169] The encoding information about coding units having a tree structure may include at least one of a coding unit corresponding to a coded depth, a prediction unit, and a minimum unit. The coding unit corresponding to the coded depth may include at least one of a prediction unit and a minimum unit containing the same encoding information. [0170] Accordingly, it is determined whether adjacent data units are included in the same coding unit corresponding to the coded depth by comparing encoding information of the adjacent data units. Also, a corresponding coding unit corresponding to a coded depth is determined by using encoding information of a data unit, and thus a distribution of coded depths in a maximum coding unit may be determined. [0171] Accordingly, if a current coding unit is predicted based on encoding information of adjacent data units, encoding information of data units in deeper coding units adjacent to the current coding unit may be directly referred to and used. [0172] Alternatively, if a current coding unit is predicted based on encoding information of adjacent data units, data units adjacent to the current coding unit are searched using encoded information of the data units, and the searched adjacent coding units may be referred for predicting the current coding unit. [0173] FIG. 13 is a diagram for describing a relationship between a coding unit, a prediction unit or a partition, and a transformation unit, according to encoding mode information of Table 1. [0174] A maximum coding unit 1300 includes coding units 1302, 1304, 1306, 1312, 1314, 1316, and 1318 of coded depths. Here, since the coding unit 1318 is a coding unit of a coded depth, split information may be set to 0. Information about a partition type of the coding unit 1318 having a size of 2N×2N may be set to be one of a partition type 1322 having a size of 2N×2N, a partition type 1324 having a size of 2N×N, a partition type 1326 having a size